
Everyday Virtualization

We are Opensource.com

Opensource.com is a community website publishing stories about creating, adopting, and
sharing open source solutions. Visit Opensource.com to learn more about how the open
source way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Do you have an open source story to tell? Submit a story idea at opensource.com/story

Email us at open@opensource.com

http://opensource.com/story
mailto://open@opensource.com
https://www.redhat.com?sc_cid=7013a000003BkHQAA0

Table of Contents
Getting started with GNOME Boxes virtualization..3
An introduction to Virtual Machine Manager..10
How to use GNOME Boxes' snapshot capability..19
How to use GNOME Boxes' remote access capabilities...23
How I use Vagrant with libvirt..29
A beginner's guide to using Vagrant..34
Use Vagrant to test your scripts on different operating systems...40
Managing virtual environments with Vagrant...44

Getting started with GNOME
Boxes virtualization

By Alan Formy-Duval

I've been a fan of virtualization technology for many years, using many different products
along the way. Virtualization has advantages for both the data center and the desktop: data
centers use it to increase server hardware utilization, while desktop users use it for modeling,
testing, and development work. One operating system running on top of a different one on
the same hardware, all thanks to the concept of a virtual machine (VM).

I recently upgraded my laptop to the latest Fedora Workstation Edition. I noticed GNOME
Boxes, simply titled Boxes, in my application menu. The GNOME Project—whose members
are the creators and maintainers of the GNOME Desktop Environment—describes GNOME
Boxes as: "A simple GNOME application to view, access, and manage remote and virtual
systems." Of course, I had to check this tool out.

This two part series article will cover two of the main features of Boxes. Because the GNOME
Boxes project refers to a VM as a "box," I'll use that terminology.

Creative Commons Attribution Share-alike 4.0 3

https://www.gnome.org/
https://wiki.gnome.org/Apps/Boxes
https://wiki.gnome.org/Apps/Boxes

Create a box
When you launch Boxes, it opens to its main window:

Start using Boxes by clicking the New button at the top-left corner of the application. This
opens a dialog titled Create a Box. The first time you run Boxes, you'll see the following
screen. Click Continue.

Creative Commons Attribution Share-alike 4.0 4

You see several options. You can download an operating system (OS), connect to a remote
box, or select a file.

The OS list at the top of the screen above is the default. The list could be different if you have
any OS ISO files in your Downloads directory. This is because Boxes detects ISO files and
creates the OS list accordingly. For example, if I have the ISO file for FreeBSD 12 (FreeBSD-
12.0-RELEASE-amd64-disc1.iso) in Downloads, it's included on the list, as shown below.

Creative Commons Attribution Share-alike 4.0 5

If you click Download an OS, you can choose an OS from a larger list with many options. The
ISO file for the OS that you select will be saved to your Downloads directory.

Create a box with an external ISO
I chose to create my first box with a version of Fedora that, at the time, wasn't available in
Boxes' default OS list. The version I wanted, at the time, was Fedora 30. I saved the Fedora 30
Workstation Live CD ISO file to my Downloads directory.

[alan@workstation Downloads]$ ls -l
-rw-r--r-- 1 alan 193.. May 2 20:08 Fedora-Workstation-Live-x86_64-30-1.2.iso
-rw-r--r-- 1 alan 892.. May 7 17:00 FreeBSD-12.0-RELEASE-amd64-disc1.iso

Now when Boxes launches, the OS list includes Fedora 30. Click Fedora-Workstation to
begin.

Creative Commons Attribution Share-alike 4.0 6

The next screen, called Review, shows the Memory and Disk properties for the new box you
created.

Clicking Customize will allow you to adjust the Memory and Disk sizes.

To move on, click Create on the top-right of the window. The new box will be created and
booted.

Creative Commons Attribution Share-alike 4.0 7

Once the Fedora Live CD boots, you can complete the installation as you usually would on
bare metal.

The final thing I did was to rename the box in the properties of the box.

Creative Commons Attribution Share-alike 4.0 8

My opinion
I'm impressed. GNOME Boxes is great for users who want to quickly deploy various operating
systems and software for development, experimenting, and learning tasks with minimal effort.
This is as GNOME intended.

GNOME Boxes is comparatively simple. A more advanced configuration of hardware, network
devices, and CPU features would require a tool like virt-manager. Your usage needs will
determine whether you might need that level of customization.

In Part 2, I'll cover the remote access capabilities of Boxes.

Download Fedora 30 Workstation

To download Fedora 30 Workstation, browse to the Fedora website. On this page, put the
mouse cursor over WORKSTATION on the left-hand side, and click Download Now.

The next screen provides the link to download the Fedora 30 Workstation 64-bit ISO file,
which is 1.9GB. I saved the file Fedora-Workstation-Live-x86_64-30-1.2.iso to my Downloads
directory.

Creative Commons Attribution Share-alike 4.0 9

https://getfedora.org/

An introduction to Virtual Machine
Manager

By Alan Formy-Duval

In my series about GNOME Boxes, I explained how Linux users can quickly spin up virtual
machines on their desktop without much fuss. Boxes is ideal for creating virtual machines in a
pinch when a simple configuration is all you need.

But if you need to configure more detail in your virtual machine, you need a tool that provides
a full range of options for disks, network interface cards (NICs), and other hardware. This is
where Virtual Machine Manager (virt-manager) comes in. If you don't see it in your
applications menu, you can install it from your package manager or via the command line:

• On Fedora: sudo dnf install virt-manager
• On Ubuntu: sudo apt install virt-manager

Once it's installed, you can launch it from its application menu icon or from the command line
by entering virt-manager.

Creative Commons Attribution Share-alike 4.0 10

https://virt-manager.org/
https://wiki.gnome.org/Apps/Boxes

To demonstrate how to create a virtual machine using virt-manager, I'll go through the steps
to set one up for Red Hat Enterprise Linux 8.

To start, click File then New Virtual Machine. Virt-manager's developers have thoughtfully
titled each step of the process (for instance, "Step 1 of 5") to make it easy. Click Local install
media and Forward.

On the next screen, browse to select the ISO file for the operating system you want to install.
(My RHEL 8 image is located in my Downloads directory.) Virt-manager automatically detects
the operating system.

Creative Commons Attribution Share-alike 4.0 11

In Step 3, you can specify the virtual machine's memory and CPU. The defaults are 1,024MB
memory and one CPU.

Creative Commons Attribution Share-alike 4.0 12

I want to give RHEL ample room to run—and the hardware I'm using can accommodate it—so
I'll increase them (respectively) to 4,096MB and two CPUs.

The next step configures storage for the virtual machine; the default setting is a 10GB disk
image. (I'll keep this setting, but you can adjust it for your needs.) You can also choose an
existing disk image or create one in a custom location.

Creative Commons Attribution Share-alike 4.0 13

Step 5 is the place to name your virtual machine and click Finish. This is equivalent to creating
a virtual machine or a Box in GNOME Boxes. While it's technically the last step, you have
several options (as you can see in the screenshot below). Since the advantage of virt-
manager is the ability to customize a virtual machine, I'll check the box labeled Customize
configuration before install before I click Finish.

Because I chose to customize the configuration, virt-manager opens a screen displaying a
bunch of devices and settings. This is the fun part!

Here you have another chance to name the virtual machine. In the list on the left, you can view
details on various aspects, such as CPU, memory, disks, controllers, and many other items. For
example, I can click on CPUs to verify the change I made in Step 3.

Creative Commons Attribution Share-alike 4.0 14

I can also confirm the amount of memory I set.

When installing a VM to run as a server, I usually disable or remove its sound capability. To do
so, select Sound and click Remove or right-click on Sound and choose Remove Hardware.

You can also add hardware with the Add Hardware button at the bottom. This brings up the
Add New Virtual Hardware screen where you can add additional storage devices, memory,
sound, etc. It's like having access to a very well-stocked (if virtual) computer hardware
warehouse.

Creative Commons Attribution Share-alike 4.0 15

Creative Commons Attribution Share-alike 4.0 16

Once you are happy with your VM configuration, click Begin Installation, and the system will
boot and begin installing your specified operating system from the ISO.

Once it completes, it reboots, and your new VM is ready for use.

Creative Commons Attribution Share-alike 4.0 17

Virtual Machine Manager is a powerful tool for desktop Linux users. It is open source and an
excellent alternative to proprietary and closed virtualization products.

Creative Commons Attribution Share-alike 4.0 18

How to use GNOME Boxes'
snapshot capability

By Alan Formy-Duval

In the first article in this series about GNOME Boxes, I explained how to get started with the
virtualization application, and in the second article, I described GNOME Boxes' remote access
capabilities. Here in the third installment, I will cover GNOME Boxes' snapshot functionality,
which is a useful way to preserve data quickly.

Snapshot technology, which has been implemented in databases, filesystems, and operating
systems, is extremely useful with virtual machines (VMs). Taking a snapshot of a VM preserves
its state at a specific point in time. Restoring or reverting the snapshot returns the VM to that
state, regardless of any changes made after the snapshot was taken. This capability can be
useful for conducting tests of new software or patches and also when something has gone
horribly wrong. As a virtualization tool, GNOME Boxes has this feature.

Time travel
Snapshots allow you to move forward and backward in time. You can save the Box at various
points and revert to those points whenever we want to revisit one. There is one important
thing to remember, though. The current, running state of a Box can be considered the active
state. When you revert to any snapshot, you will lose the active state. So, if you intend to (or
think you might) return to the current state, you must take a new snapshot prior to reverting
to another one. Note that this feature is not applicable to remote Boxes.

To access the snapshot feature, click the Properties menu on a local Box. If you are on the
main screen, right-click on the Box. If you are viewing a Box, you can access the menu from
the button in the top-right corner. Then click Snapshots at the top of the Properties screen.

Creative Commons Attribution Share-alike 4.0 19

https://opensource.com/article/19/5/gnome-boxes-remote-access-capabilities
https://opensource.com/article/19/5/gnome-boxes-remote-access-capabilities
https://opensource.com/article/19/5/getting-started-gnome-boxes-virtualization
https://opensource.com/article/19/5/getting-started-gnome-boxes-virtualization
https://wiki.gnome.org/Apps/Boxes

The Properties menu of a local box

Snapshots screen for a local box

Creative Commons Attribution Share-alike 4.0 20

Creating a snapshot
The Snapshots screen shows all existing snapshots and a small plus (+) button at the bottom
for creating new ones. Go ahead and click the plus button. The first thing you see is "Creating
new snapshot…" and a progress indicator. Be patient, as creating a snapshot can take a few
minutes. When it's complete, the new snapshot appears with the date and time it was created
and a small gear icon. This icon brings up the Actions menu for reverting, renaming, or
deleting the snapshot.

A snapshot and its action menu

That's it! You now have a snapshot of your Box.

Reverting a snapshot
Suppose you are a tester. Each time a new version of your product is built, you need to
conduct user acceptance testing. You could create a new VM every time or replace the old
version with the new one. That can be a time-consuming process. Removing an old version
may not completely remove all remnant files, which could taint future testing. This is where a
snapshot comes in incredibly handy. Simply revert to a previous, "known-clean" state before
each new test to ensure the integrity of the test.

Or suppose you made some changes to your VM and ran a few scripts, then you realize some
important files in your home directory were mistakenly deleted. You don't need to worry,
though. You can go back to the Snapshots screen, select the Actions menu for the snapshot
named 08/15/2019, 10:28:52 AM, and click Revert to this state. The Box will be returned
to the exact point when this snapshot was taken.

Creative Commons Attribution Share-alike 4.0 21

Renaming a snapshot
As you create more snapshots, it can get confusing to keep track of them based only on the
creation date and time, which is Boxes' default naming convention. For this reason, it is good
to rename your snapshots to make them more descriptive. Just open the Actions menu for
the snapshot and select Rename from the drop-down.

Snapshots renamed to be more descriptive

Deleting a snapshot
If you decide you no longer need to keep a snapshot, it's easy to delete it. Just go back to the
snapshot's Properties and select Delete from the menu. Deleting a snapshot will not
interfere with any other snapshot or the active state of the Box.

As I have shown in my previous Boxes articles, you can have one or more VMs—or as GNOME
Boxes calls them, Boxes.

Creative Commons Attribution Share-alike 4.0 22

How to use GNOME Boxes' remote
access capabilities

By Alan Formy-Duval

In the first chapter of this book, I introduced GNOME Boxes, an open source virtualization tool
maintained by the GNOME Project as part of its GNOME Desktop Environment. The GNOME
Project describes Boxes as: "A simple GNOME application to view, access, and manage
remote and virtual systems."

Boxes is not a one-trick pony. In addition to quickly creating a box locally, you can also
connect to remote systems, both physical and virtual, using various protocols. Boxes' main
screen then displays both local and remote boxes in a way that brings them together for
easier access.

In this chapter, I cover the remote access capabilities of Boxes. As in the previous chapters, I'm
using "box" to refer to a virtual machine.

Connect to a remote box
When you open Boxes, it displays the main window.

Creative Commons Attribution Share-alike 4.0 23

https://wiki.gnome.org/Apps/Boxes
https://wiki.gnome.org/Apps/Boxes

When you click the New button in the top-left corner, the Create a Box dialog will open.

Creative Commons Attribution Share-alike 4.0 24

Connect with SSH

To connect to a remote system using the Secure Shell (SSH) protocol, click Connect to a
remote box.

Enter the SSH address, for example, ssh://t400f30, and then click Continue.

Click Create on the Review screen.

Boxes connects to the remote system via SSH, and you can log in as usual. The name of the
box derives from the hostname. I recommend changing it in the Properties to something like
SSH to t400f30 to be more clear in case you have multiple connections to the same remote
system.

Creative Commons Attribution Share-alike 4.0 25

Connect with VNC

To connect with Virtual Network Computing (VNC), enter the address, such as
vnc://t400f30. VNC provides a graphical view of a remote system's desktop.

Creative Commons Attribution Share-alike 4.0 26

Connect with RDP and SPICE

Boxes also supports the Remote Desktop Protocol (RDP) and SPICE protocol; they are used
in the same way as VNC and SSH, in that you provide the address of the system to which you
want to connect.

Your boxes
As you create boxes and connect to remote systems, the main window will begin to fill and
provide a centralized store for all of your boxes. You can also choose to view only your local
boxes or only remote boxes. This screen can be configured to view them in two ways: either
in a list or as large icons.

Creative Commons Attribution Share-alike 4.0 27

GNOME Boxes can expedite the deployment of virtual machines, or boxes, on your local
Linux system. It's nice to have a combined view of local and remote boxes.

Boxes is possibly the simplest virtualization tool and it's great for people who don't have a lot
of time or need for complex configurations.

Creative Commons Attribution Share-alike 4.0 28

How I use Vagrant with libvirt

By Seth Kenlon

I'm a fan of Linux not only in the professional sense, but also just for fun. While I've used
Slackware on workstations and Red Hat Enterprise Linux (RHEL) on servers for years, I love
seeing how other distributions do things. What's more, I really like to test applications and
scripts I write on other distributions to ensure portability. In fact, that's one of the great
advantages of Linux, as I see it: You can download a distro and test your software on it for
free. You can't do that with a closed OS, at least not without either breaking an EULA or
paying to play, and even then, you're often signing up to download several gigabytes just to
test an application that's no more than a few hundred megabytes. But Linux is open source,
so there's rarely an excuse to ignore at least the three or four main distros, except that setting
up a virtual machine can take a lot of clicks and sometimes complex virtual networking. At
least, that used to be the excuse until Vagrant changed the virtual machine workflow for
developers.

What is Vagrant
Vagrant is a simple virtual machine manager for your terminal. It allows you to easily pull a
minimal and pre-built virtual machine from the Internet, run it locally, and SSH into it in just a
few steps. It's the quickest you'll ever set up a virtual machine. It's ideal for web developers
needing a test web server, programmers who need to test an application across distributions,
and hobbyists who enjoy seeing how different distributions work.

Vagrant itself is relatively minimal, too. It's not a virtualization framework itself. It only
manages your virtual machines ("boxes" in Vagrant terminology). It can use VirtualBox or,
through a plug-in, the lightweight libvirt project as a backend.

Creative Commons Attribution Share-alike 4.0 29

What is libvirt
The libvirt project is a toolkit designed to manage virtualization, with support for KVM, QEMU,
LXC, and more. You might think of it as a sort of virtual machine API, allowing developers to
write friendly applications that make it easy for users to orchestrate virtualization through
libvirt. I use libvirt as the backend for Vagrant because it's useful across several applications,
including virt-manager and GNOME Boxes.

Installing Vagrant
You can install Vagrant from vagrantup.com/downloads. There are builds available for Debian-
based systems, CentOS-based systems, macOS, Windows, and more.

For CentOS, Fedora, or similar, you get an RPM package, which you can install with dnf:

$ sudo dnf install ./vagrant_X.Y.ZZ_x86_64.rpm

On Debian, Linux Mint, Elementary, and similar, you get a DEB package, which you can install
with apt:

$ sudo apt install ./vagrant_X.Y.ZZ_x86_64.deb

Installing libvirt and support packages
On Linux, your distribution may already have libvirt installed, but to enable integration with
Vagrant you need a few other packages, too. Install these with your package manager.

On Fedora, CentOS, and similar:

$ sudo dnf install gcc libvirt \
libvirt-devel libxml2-devel \
make ruby-devel libguestfs-tools

On Debian, Linux Mint, and similar:

$ sudo apt install build-dep vagrant ruby-libvirt \
qemu libvirt-daemon-system libvirt-clients ebtables \
dnsmasq-base libxslt-dev libxml2-dev libvirt-dev \
zlib1g-dev ruby-dev libguestfs-tools

Creative Commons Attribution Share-alike 4.0 30

https://www.vagrantup.com/downloads
https://opensource.com/article/18/11/behind-scenes-linux-containers
https://opensource.com/article/20/8/virt-tools#qemu
https://opensource.com/article/20/8/virt-tools#kvm

Depending on your distribution, you may have to start the libvirt daemon (some
distributions start it automatically after install, but it doesn't hurt to try to start it if you're not
sure):

$ sudo systemctl start libvirtd

Installing the Vagrant-libvirt plugin
In Vagrant, libvirt is enabled through a plug-in. Vagrant makes it easy to install a plug-in, so
your first Vagrant command is one you'll rarely run again:

$ vagrant plugin install vagrant-libvirt

Now that the libvirt plug-in is installed, you can start using virtual machines.

Setting up your Vagrant environment
To start with Vagrant, create a directory called ~/Vagrant. This is where your
Vagrantfiles are stored.

$ mkdir ~/Vagrant

In this directory, create a subdirectory to represent a distro you want to download. For
instance, assume you need a CentOS test box.

Create a CentOS directory, and then change to it:

$ mkdir ~/Vagrant/centos
$ cd ~/Vagrant/centos

Now you need to find a virtual machine so you can convert the directory you've just made into
a Vagrant environment.

Finding a Vagrant virtual machine
Broadly speaking, Vagrant boxes come from three different places: Hashicorp (the
maintainers of Vagrant), maintainers of distributions, and people like you and me. Some
images are minimal, intended to serve as a base for customization. In contrast, others try to
solve a specific need (for instance, you might find a LAMP stack image ready for web

Creative Commons Attribution Share-alike 4.0 31

development). You can find images by browsing or searching the main hub for boxes
app.vagrantup.com/boxes/search.

For this example, search for "centos" and find the entry named generic/centos8. Click on
the image for instructions on how to use the virtual machine. The instructions come in two
varieties:

• The code you need for a Vagrantfile
• The command you need to use the box from a terminal

The latter is the more straightforward method:

$ vagrant init generic/centos8

The init subcommand creates a configuration file, called a Vagrantfile, in your current
directory, which transforms that directory into a Vagrant environment. At any time, you can
view a list of known Vagrant environments using the global-status subcommand:

$ vagrant global-status
id name provider state directory

49c797f default libvirt running /home/tux/Vagrant/centos8

Starting a virtual machine with Vagrant
Once you've run the init command, you can start your virtual machine with vagrant up:

$ vagrant up

This causes Vagrant to download the virtual machine image if it doesn't already exist locally,
set up a virtual network, and configure your box.

Entering a Vagrant virtual machine
Once your virtual machine is up and running, you can log in to it with vagrant ssh:

$ vagrant ssh
box$

Creative Commons Attribution Share-alike 4.0 32

https://app.vagrantup.com/boxes/search

You connect to the box running in your current Vagrant environment. Once logged in, you can
run all the commands native to that host. It's a virtual machine running its own kernel, with
emulated hardware and common Linux software.

Leaving a Vagrant virtual machine
To leave your Vagrant virtual machine, log out of the host as you normally exit a Linux
computer:

box$ exit

Alternately, you can power the virtual machine down:

box$ sudo poweroff

You can also stop the machine from running using the vagrant command:

box$ vagrant halt

Destroying a Vagrant virtual machine
When finished with a Vagrant virtual machine, you can destroy it:

$ vagrant destroy

Alternately, you can remove a virtual machine using the global box subcommand:

$ vagrant box remove generic/centos8

Vagrant is easy
Vagrant makes virtual machines trivial, disposable, and fast. When you need a test
environment or a fake server to ping or develop on, or a clean lab computer for
experimentation or monitoring, you can get one with Vagrant. Some people think virtual
machines aren't relevant now that containers have taken over servers, but virtual machines
have unique traits that make them useful. They run their own kernel, have a full and unique
stack separate from the host machine, and use emulated hardware. When a virtual machine is
what you need, Vagrant may be just the best way to get it.

Creative Commons Attribution Share-alike 4.0 33

A beginner's guide to using
Vagrant

By Jessica Cherry

Vagrant describes itself as "a tool for building and managing virtual machine environments in
a single workflow. With an easy-to-use workflow and focus on automation, Vagrant lowers
development environment setup time, increases production parity, and makes the 'works on
my machine' excuse a relic of the past."

Vagrant works with a standard format for documenting an environment, called a
Vagrantfile. According to Vagrant's website:

The primary function of the Vagrantfile is to describe the type of machine required
for a project, and how to configure and provision these machines. Vagrantfiles are
called Vagrantfiles because the actual literal filename for the file is Vagrantfile
(casing does not matter unless your file system is running in a strict case sensitive
mode).

Vagrant is essentially a wrapper to allow for repeatable virtual machine management, but it
does not run VMs itself. This tutorial will use VirtualBox as that environment manager, though
Hyper-V and Docker also work by default. Check out Vagrant's documentation to learn how to
use a different provider for this tutorial.

Build a Vagrantfile
This tutorial works through an example application for a simple Hello World page inside a Ruby
on Rails (Rails for short) web app. Before you begin, install the following (if you haven't
already):

• Vagrant
• VirtualBox

Creative Commons Attribution Share-alike 4.0 34

https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/docs/installation/
https://www.vagrantup.com/docs/providers/basic_usage.html
https://www.vagrantup.com/docs/providers/basic_usage.html
https://www.virtualbox.org/browser/vbox/trunk
https://www.vagrantup.com/docs/vagrantfile/
https://www.vagrantup.com/intro/index.html

• Ruby on Rails
• An editing environment, like Atom or Notepad++

If you're on Fedora and prefer using the command line, there is an excellent Fedora tutorial,
and there's a similarly helpful tutorial for Windows using Chocolatey. After everything is
installed, open your terminal and create a new directory to work in. You can put your directory
wherever you like; I prefer to use a folder under my user account:

$ mkdir -p ~/Development/Rails_app
$ cd ~/Development/Rails_app
$ vagrant init

A `Vagrantfile` has been placed in this directory. You are now
ready to `vagrant up` your first virtual environment! Please read
the comments in the Vagrantfile as well as documentation on
`vagrantup.com` for more information on using Vagrant.

This creates a Vagrantfile with the default configuration information written in Ruby syntax.
Look at line 15:

config.vm.box = "base"

This indicates that Vagrant will use a default operating system image it hosts called base,
which you don't have yet. Confirm that by running box list:

$ vagrant box list
There are no installed boxes! Use `vagrant box add` to add some.

Should you try to start your environment using the up command, it fails because Vagrant
expects an OS called base to exist locally. Switch to the most commonly used environment,
bento/ubuntu-16.04, then try to spin up your environment. Change the config.vm.box line
in your Vagrantfile to:

config.vm.box = "centos/7"

And now you can run the most satisfying command in virtual machine history:

$ vagrant up
Bringing machine 'default' up with 'libvirt' provider...
==> default: Box 'centos/7' could not be found. Attempting to find and install...
 default: Box Provider: libvirt
 default: Box Version: >= 0

Creative Commons Attribution Share-alike 4.0 35

https://codingbee.net/vagrant/vagrant-installing-vagrant-on-windows
https://computingforgeeks.com/how-to-install-vagrant-and-virtualbox-on-fedora/
https://notepad-plus-plus.org/downloads/
https://atom.io/
http://installrails.com/steps/choose_os

==> default: Loading metadata for box 'centos/7'
 default: URL: https://vagrantcloud.com/centos/7
==> default: Adding box 'centos/7' (v1905.1) for provider: libvirt
 default: Downloading:
https://vagrantcloud.com/centos/boxes/7/versions/1905.1/providers/libvirt.box
 default: Download redirected to host: cloud.centos.org
...

Here is why this is so nice. This tutorial sets up a small website, but if you had a larger website
and needed to check whether the frontend looks right, your playbook file and copy-over files
would allow you to see your changes. If you have small applications you want to test quickly—
without doing an entire Docker image build or logging into a server—this local testing is good
for quick checks and repairs. If you're working within hardware, this will make it easy to see if
the application will work within your operating system, and it allows you to know which
dependencies you need. In the end, it makes for easier deployment and faster testing than
doing a from-scratch continuous integration and deployment (CI/CD) to a test server, and it
provides quicker access and more control.

The reason this is so cool can be explained in one simple sentence: You now have local
automation. It also allows you to gather a larger breadth of knowledge behind Ansible and
headless server deployments.

Verify Vagrant worked correctly
One way to determine whether this finished properly is seeing a bunch of green text and the
words rails server -h for startup options. This means the web app has started and is running.

But you want to use vagrant global-status as well as vagrant status.

Creative Commons Attribution Share-alike 4.0 36

https://www.ansible.com/

The vagrant status command checks the machine states that originate in the current
directory. So, if you have a VM up and running, it will show as up and running. If it is broken in
any way, it will display a message with an error and some logs when you run vagrant up. If
some machines are down, they will also show as not running or shut down.

However, the vagrant global-status command can give the status of multiple environments
created in Vagrant. So, if you split the environments for different VM types or storage types,
this command gives you an option to see everything in all the environments you've created.

Customize the Vagrant configuration
The machine settings have multiple config.vm options. This tutorial will use the networking
option to allow port forwarding. Port forwarding allows you to access a network port in our
virtual environment as if it was a local port via a special local network. This means traffic is
allowed to see the one thing you allow on this server; in this case, it's a tiny frontend webpage.

The main reason this matters is for security. Limiting traffic can prevent bad actors and traffic
overflow. The way this is built, you can't log into this server unless you configure it as such.
This also means no one else can SSH in or see anything except the one little frontend
webpage.

Creative Commons Attribution Share-alike 4.0 37

https://www.vagrantup.com/docs/vagrantfile/machine_settings.html

Before moving on, remove the VM so you can start over by running vagrant destroy:

$ vagrant destroy
 default: Are you sure you want to destroy the 'default' VM? [y/N] y
==> default: Removing domain...

To include port forwarding, add this in the next config line:

 Vagrant.configure("2") do |config|
 config.vm.box = "bento/ubuntu-16.04"
 config.vm.network "forwarded_port", guest: 3000, host: 9090
 end

Save the file and run:

vagrant up

You now have a VM that forwards port 3000 out to the open world as 9090. You should now
be able to go to 127.0.0.1:9090 on your web browser and see nothing but a plain white page.

Run vagrant destroy again to remove the VM so you can start over.

Provision Vagrant with Ansible and scripts
While base boxes offer a good starting point, it's common to customize a VM during the
provisioning process, and you can use multiple provisioning tactics. To follow along, download
the playbook and script.

This example uses Ansible to set up a basic install of the Ruby on Rails web framework. Then,
it adds an extra shell script to configure the web app's welcome page to say: Hello World,
Sorry for the Delay. (The purpose of this message is because this build takes a long time and
people may become frustrated by the delay.)

The following Vagrantfile reflects Ansible and a playbook running locally on my machine, so it
will differ from yours. You can read about using Ansible with Vagrant in Vagrant's docs.

Vagrant.configure("2") do |config|
 config.vm.box = "bento/ubuntu-16.04"
 config.vm.network "forwarded_port", guest: 3000, host: 9090
 ####### Provision #######
 config.vm.provision "ansible_local" do |ansible|
 ansible.playbook = "prov/playbook.yml"
 ansible.verbose = true

Creative Commons Attribution Share-alike 4.0 38

https://www.vagrantup.com/docs/provisioning/ansible.html
https://github.com/Alynder/vagrant_adwx
https://github.com/Alynder/vagrant_adwx
https://www.vagrantup.com/docs/cli/destroy.html

 config.vm.provision "shell", path: "script.sh"
 end
end

After saving the file, run my favorite command:

vagrant up

You now have a VM up and running with Rails, and when you enter 127.0.0.1:9090 in your web
browser, you see a webpage that says: Hello World, Sorry for the Delay.

Now that you have all this background, you can try to build your own script.

Final notes
Vagrant is fairly easy to work with and has abundant documentation to help you along the way.
It's is a great tool if you're looking to work with code in a small staging or development
environment; any destruction is a non-issue because the environment itself is disposable.

Want to give it a try? Take a look at my repo.

Creative Commons Attribution Share-alike 4.0 39

https://github.com/Alynder/vagrant_adwx
https://www.vagrantup.com/docs/index.html
https://www.bogotobogo.com/RubyOnRails/RubyOnRails_HelloWorld_Rails.php

Use Vagrant to test your scripts
on different operating systems

By Ayush Sharma

I've been happy using Vagrant for quite a while now. I work with several DevOps tools, and
installing them all on one system can get complicated. Vagrant lets you do cool things without
breaking your system because you don't have to experiment on your production system at all.

If you're familiar with VirtualBox or GNOME Boxes, then learning Vagrant is easy. Vagrant is a
simple and clean interface for working with virtual machines. A single config file, called
Vagrantfile, allows you to customize your virtual machines (called Vagrant boxes). A simple
command-line interface lets you start, stop, suspend, or destroy your boxes.

Consider this simple example.

Let's say you want to write Ansible or shell scripts to install Nginx on a new server. You can't
do it on your own system because you might not be running the operating system you want to
test, or you may not have all of the dependencies for what you want to do. Launching new
cloud servers for testing can be time-consuming and expensive. This is where Vagrant comes
in. You can use it to bring up a virtual machine, provision it using your scripts, and prove that
everything works as expected. You can then delete the box, re-provision it, and re-run your
scripts to verify it. You can repeat this process as many times as you want until you're
confident your scripts work under all conditions. And you can commit your Vagrantfile to Git
to ensure your team is testing the exact same environment (because they'll be using the exact
same test box). No more "…but it works fine on my machine!"

Getting started
First, install Vagrant on your system and then create a new folder to experiment in. In this new
folder, create a new file named Vagrantfile with these contents:

Creative Commons Attribution Share-alike 4.0 40

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/hirsute64"
 end

You can also run vagrant init ubuntu/hirsute64, and it will generate a new Vagrantfile
for you. Now run vagrant up. This command will download
the ubuntu/hirsuite64 image from the Vagrant registry.

Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'ubuntu/hirsute64'...
==> default: Matching MAC address for NAT networking...
==> default: Checking if box 'ubuntu/hirsute64' version '20210820.0.0' is up to
date...
==> default: Setting the name of the VM: a_default_1630204214778_76885
==> default: Clearing any previously set network interfaces...
==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
 default: Adapter 2: hostonly
==> default: Forwarding ports...
 default: 22 (guest) => 2222 (host) (adapter 1)
==> default: Running 'pre-boot' VM customizations...
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
 default: SSH address: 127.0.0.1:2222
 default: SSH username: vagrant
 default: SSH auth method: private key
 default: Warning: Remote connection disconnect. Retrying...
 default: Warning: Connection reset. Retrying...
 default:
 default: Vagrant insecure key detected. Vagrant will automatically replace
 default: this with a newly generated keypair for better security.
 default:
 default: Inserting generated public key within guest...
 default: Removing insecure key from the guest if it's present...
 default: Key inserted! Disconnecting and reconnecting using new SSH key...
==> default: Machine booted and ready!

At this point, if you open your Vagrant backend (such as VirtualBox or virt-manager), you'll
see your box there. Next, run vagrant ssh to log in to the box. If you can see the Vagrant
prompt, then you’re in!

~ vagrant ssh
Welcome to Ubuntu 21.04 (GNU/Linux 5.11.0-31-generic x86_64)

 * Documentation: https://help.ubuntu.com
 * Management: https://landscape.canonical.com
 * Support: https://ubuntu.com/advantage

Creative Commons Attribution Share-alike 4.0 41

 System information as of Sun Aug 29 02:33:51 UTC 2021

 System load: 0.01 Processes: 110
 Usage of /: 4.1% of 38.71GB Users logged in: 0
 Memory usage: 17% IPv4 address for enp0s3: 10.0.2.15
 Swap usage: 0% IPv4 address for enp0s8: 192.168.1.20

0 updates can be applied immediately.

vagrant@ubuntu-hirsute:~$

Vagrant uses "base boxes" to bring up your local machines. In our case, Vagrant downloads
the ubuntu/hirsuite64 image from Hashicorp’s Vagrant catalogue and plugs into
VirtualBox to create the actual box.

Shared folders
Vagrant maps your current folder as /vagrant within the Vagrant box. This allows you to
keep your files in sync on your system and within the box. This is great for testing a Nginx
website by pointing your document root to /vagrant. You can use an IDE to make changes
and Nginx within the box will serve them.

Vagrant commands
There are several Vagrant commands which you can use to control your box.

Some of the important ones are:

• vagrant up: Bring a box online.
• vagrant status: Show current box status.
• vagrant suspend: Pause the current box.
• vagrant resume: Resume the current box.
• vagrant halt: Shutdown the current box.
• vagrant destroy: Destroy the current box. By running this command, you will lose

any data stored on the box.
• vagrant snapshot: Take a snapshot of the current box.

Creative Commons Attribution Share-alike 4.0 42

https://app.vagrantup.com/boxes/search

Try Vagrant
Vagrant is a time-tested tool for virtual machine management using DevOps principles.
Configure your test machines, share the configs with your team, and test your projects in a
predictable and reproducible environment. If you're developing software, then you'll do your
users a great service by using Vagrant for testing. If you're not developing software but you
love to try out new versions of an OS, then there's no easier way. Try Vagrant today!

Creative Commons Attribution Share-alike 4.0 43

Managing virtual environments
with Vagrant

By Alex Juarez

Vagrant is a tool that offers a simple and easy to use command-line client for managing virtual
environments. I started using it because it made it easier for me to develop websites, test
solutions, and learn new things.

In this getting-started guide, I demonstrate how to use Vagrant to:

1. Create and configure a VirtualBox virtual machine (VM)
2. Run post-deployment configuration shell scripts and applications

Sounds simple, and it is. Vagrant's power comes from having a consistent workflow for
deploying and configuring machines regardless of platform or operating system.

We'll start by using VirtualBox as a provider, setting up an Ubuntu 16.04 box, and applying a
few shell commands as the provisioner. I'll refer to the physical machine (e.g., a laptop or
desktop) as the host machine and the Vagrant VM as the guest.

In this tutorial, you'll put together a Vagrantfile and offer periodic checkpoints to make sure
our files look the same. The introductory topics include:

• Installing Vagrant
• Choosing a Vagrant box
• Understanding the Vagrantfile
• Getting the VM running
• Using provisioners

Advanced topics:

• Networking
• Syncing folders

Creative Commons Attribution Share-alike 4.0 44

https://www.vagrantup.com/docs/vagrantfile/

• Deploying multiple machines
• Making sure everything works

It looks like a lot, but it will all fit together nicely once we are finished.

Installing Vagrant
First, download Vagrant and VirtualBox and install the latest versions of each.

We can enter the following commands to ensure the latest versions of the applications are
installed and ready to use.

Vagrant:

$ vagrant --version
Vagrant 2.0.3

VirtualBox:

$ VBoxManage --version
5.2.8r121009

Choosing a Vagrant box
Picking a Vagrant box is similar to picking an image for a server. At the base level, we choose
which operating system (OS) we want to use. Some boxes go further and will have additional
software (such as the Puppet or Chef client) already installed.

The go-to online repository for boxes is Vagrant Cloud; it offers a cornucopia of Vagrant
boxes for multiple providers. In this tutorial, we'll be using Ubuntu Xenial Xerus 16.04 LTS daily
build.

Understanding the Vagrantfile
Think of the Vagrantfile as the configuration file for an environment. It describes the Vagrant
environment with regard to how to build and configure the VirtualBox VMs.

We need to create an empty project directory to work from, then initialize a Vagrant
environment from that directory with this command:

$ vagrant init ubuntu/xenial64

Creative Commons Attribution Share-alike 4.0 45

https://vagrantcloud.com/
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html

This only creates the Vagrantfile; it doesn't bring up the Vagrant box.

The Vagrantfile is well-documented with a lot of guidance on how to use it. We can generate a
minimized Vagrantfile with the --minimal flag.

$ vagrant init --minimal ubuntu/xenial64

The resulting file will look like this:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
end

We will talk more about the Vagrantfile later, but for now, let's get this box up and running.

Getting the VM running
Let's issue the following command from our project directory:

$ vagrant up

It takes a bit of time to execute vagrant up the first time because it downloads the box to
your machine. It is much faster on subsequent runs because it reuses the same downloaded
box.

Once the VM is up and running, we can ssh into our single machine by issuing the following
command in our project directory:

$ vagrant ssh

That's it! From here we should be able to log onto our VM and start working with it.

Using provisioners
Before we move on, let's review a bit. So far, we've picked an image and gotten the server
running. For the most part, the server is unconfigured and doesn't have any of the software
we might want.

Provisioners provide a way to use tools such as Ansible, Puppet, Chef, and even shell scripts to
configure a server after deployment.

Creative Commons Attribution Share-alike 4.0 46

An example of using the shell provisioner can be found in a default Vagrantfile. In this
example, we'll run the commands to update apt and install Apache2 to the server.

 config.vm.provision "shell", inline: <<-SHELL
 apt-get update
 apt-get install -y apache2
 SHELL

If we want to use an Ansible playbook, the configuration section would look like this:

config.vm.provision "ansible" do |ansible|
 ansible.playbook = "playbook.yml"
end

A neat thing is we can run only the provisioning part of the Vagrantfile by issuing the
provision subcommand. This is great for testing out scripts or configuration management
plays without having to re-build the VM each time.

Vagrantfile checkpoint

Our minimal Vagrantfile should look like this:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
 config.vm.provision "shell", inline: <<-SHELL
 apt-get update
 apt-get install -y apache2
 SHELL
end

After adding the provisioning section, we need to run this provisioning subcommand:

$ vagrant provision

Next, we'll continue to build on our Vagrantfile, touching on some more advanced topics to
build a foundation for anyone who wants to dig in further.

Networking
In this section, we'll add an additional IP address on VirtualBox's vboxnet0 network. This will
allow us to access the machine via the 192.168.33.0/24 network.

Creative Commons Attribution Share-alike 4.0 47

Adding the following line to the Vagrantfile will configure the machine to have an additional IP
on the 192.168.33.0/24 network. This line is also used as an example in the default
Vagrantfile.

config.vm.network "private_network", ip: "192.168.33.10

Vagrantfile checkpoint

For those following along, here where our working Vagrantfile stands:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
 config.vm.network "private_network", ip: "192.168.33.10"
 config.vm.provision "shell", inline: <<-SHELL
 apt-get update
 apt-get install -y apache2
 SHELL
end

Next, we need to reload our configuration to reconfigure our machine with this new interface
and IP. This command will shut down the VM, reconfigure the Virtual Box VM with the new IP
address, and bring the VM back up.

$ vagrant reload

When it comes back up, our machine should have two IP addresses.

Syncing folders
Synced folders are what got me into using Vagrant. They allowed me to work on my host
machine, using my tools, and at the same time have the files available to the web server or
application. It made my workflow much easier.

By default, the project directory on the host machine is mounted to the guest machine as
/home/vagrant. This worked for me in the beginning, but eventually, I wanted to customize
where this directory was mounted.

In our example, we are defining that the HTML directory within our project directory should be
mounted as /var/www/html with user/group ownership of root.

config.vm.synced_folder "./html", "/var/www/html",
 owner: "root", group: "root"

Creative Commons Attribution Share-alike 4.0 48

One thing to note: If you are using a synced folder as a web server document root, you will
need to disable sendfile, or you might run into an issue where it looks like the files are not
updating.

Updating your web server's configuration is out of scope for this article, but here are the
directives you will want to update.

In Apache:

EnableSendFile Off

In Nginx:

sendfile off;

Vagrantfile checkpoint

After adding our synced folder configuration, our Vagrantfile will look like this:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/xenial64"
 config.vm.network "private_network", ip: "192.168.33.10"
 config.vm.synced_folder "./html, "/var/www/html",
 owner: "root", group: "root"
 config.vm.provision "shell", inline: <<-SHELL
 apt-get update
 apt-get install -y apache2
 SHELL
end

We need to reload our machine to make the new configuration active.

$ vagrant reload

Deploying multiple machines
We sometimes refer to the project directory as an "environment," and one machine is not
much of an environment. This last section extends our Vagrantfile to deploy two machines.

To create two machines, we need to enclose the definition of a single machine inside a
vm.define block. The rest of the configuration is exactly the same.

Here is an example of a server definition within a define block.

Creative Commons Attribution Share-alike 4.0 49

Vagrant.configure("2") do |config|

config.vm.define "web" do |web|
 web.vm.box = "web"
 web.vm.box = "ubuntu/xenial64"
 web.vm.network "private_network", ip: "192.168.33.10"
 web.vm.synced_folder "./html", "/var/www/html",
 owner: "root", group: "root"
 web.vm.provision "shell", inline: <<-SHELL
 apt-get update
 apt-get install -y apache2
 SHELL
 end

end

Notice in the define block, our variable is called "web" and it is carried through the block to
reference each configuration method. We'll use the same name to access it later.

In this next example, we'll add a second machine called "db" to our configuration. Where we
used "web" in our second block before, we'll use "db" to reference the second machine. We'll
also update our IP address on the private_network so we can communicate between the
machines.

Vagrant.configure("2") do |config|

config.vm.define "web" do |web|
 web.vm.box = "web"
 web.vm.box = "ubuntu/xenial64"
 web.vm.network "private_network", ip: "192.168.33.10"
 web.vm.synced_folder "./html", "/var/www/html",
 owner: "root", group: "root"
 web.vm.provision "shell", inline: <<-SHELL
 apt-get update
 apt-get install -y apache2
 SHELL
 end

 config.vm.define "db" do |db|
 db.vm.box = "db"
 db.vm.box = "ubuntu/xenial64"
 db.vm.network "private_network", ip: "192.168.33.20"
 db.vm.synced_folder "./html", "/var/www/html",
 owner: "root", group: "root"
 db.vm.provision "shell", inline: <<-SHELL
 apt-get update

Creative Commons Attribution Share-alike 4.0 50

 apt-get install -y apache2
 SHELL
 end

end

Completed Vagrantfile checkpoint

In our final Vagrantfile, we'll install the MySQL server, update the IP address, and remove the
configuration for the synced folder from the second machine.

Vagrant.configure("2") do |config|

config.vm.define "web" do |web|
 web.vm.box = "web"
 web.vm.box = "ubuntu/xenial64"
 web.vm.network "private_network", ip: "192.168.33.10"
 web.vm.synced_folder "./html", "/var/www/html",
 owner: "root", group: "root"
 web.vm.provision "shell", inline: <<-SHELL
 apt-get update
 apt-get install -y apache2
 SHELL
 end

 config.vm.define "db" do |db|
 db.vm.box = "db"
 db.vm.box = "ubuntu/xenial64"
 db.vm.network "private_network", ip: "192.168.33.20"
 db.vm.provision "shell", inline: <<-SHELL
 export DEBIAN_FRONTEND="noninteractive"
 apt-get update
 apt-get install -y mysql-server
 SHELL
 end

end

Making sure everything works
Now we have a completed Vagrantfile. Let's introduce one more Vagrant command to make
sure everything works.

Let's destroy our machine and build it brand new.

Creative Commons Attribution Share-alike 4.0 51

The following command will remove our previous Vagrant image but keep the box we
downloaded earlier.

$ vagrant destroy --force

Now we need to bring the environment back up.

$ vagrant up

We can ssh into the machines using the vagrant ssh command:

$ vagrant ssh web

or

$ vagrant ssh db

You should have a working Vagrantfile you can expand upon and serve as a base for learning
more. Vagrant is a powerful tool for testing, developing and learning new things. I encourage
you to keep adding to it and exploring the options it offers.

Creative Commons Attribution Share-alike 4.0 52

